赵建伟, 林雨场, 陈升, 李琦, 李更丰, 张理寅, 陆旭, 辛正堃
近年来,日益频发的台风、冰灾、地震、高温等气象灾害事件严重威胁电力系统的安全可靠运行,极端气象灾害下的大规模电网事故导致极高的社会经济损失,因此,对电力系统灾害故障进行精准有效预测具有重要意义。然而,传统方法考虑的故障影响因素类型较为单一,未能同时考虑气象、地理、电网等多种因素对系统故障的影响。同时,考虑极端气象灾害的空间分布和时序演变特性,故障的时空相关性也是预测中的关键因素。因此,本文提出一种基于卷积-长短期记忆神经网络的电力系统气象灾害故障预测方法,建立包含气象、地理、电网多源数据的电力系统故障预测数据集,提出基于卷积神经网络的多源数据融合分析方法,实现故障空间相关性的高效提取;基于长短期记忆算法设计了具有双层网络结构的故障时序预测方法,实现了故障时间相关性的有效刻画,最终形成卷积-长短期记忆神经网络统一框架,提升气象灾害故障预测的准确度。所提方法的有效性和准确性通过台风“米卡拉”、“卢碧”的历史气象数据以及中国东南沿海某区域地理、电网数据进行验证。