本文在标准粒子群算法的基础上,遵循群体寻优的生物特性,提出了仿生粒子群算法。初期将群体动态地分成多个子群,每个子群相对独立地向一个目标进化,子群的成员随着进化过程不断地更迭。后期增加子群间的信息交流,使算法更快收敛。该算法不仅丰富了种群的多样性,避免过早收敛于局部最优解,而且有较快的收敛速度。文中将该算法应用于电力系统无功优化中并与标准粒子群算法进行了比较,通过对IEEE30节点和IEEE118节点的算例仿真,证明了该算法的可行性和有效性。
Abstract
Based on the particle sward optimization (PSO), bionic particle sward optimization (BPSO) algorithm is presented in this paper which follows the biological feature of group optimizing. In the early period, group is dynamically divided into several subgroups, each of which is relatively independent and evolves towards one target. Members change rapidly as the procedure of evolution proceeds. The latter increases the exchange of information between subgroups, and so the algorithm converges faster. Not only can this algorithm enrich the variety of population and avoid converging the local optimal solution, but it can also attain a fairly high rate of convergence. In this paper, the algorithm is applied in the reactive power optimization of power system. Compared with the standard PSO, the algorithm is proved to be feasible and practicable through simulation of IEEE30 bus system and IEEE118 bus system.
关键词
电力系统 /
无功优化 /
仿生 /
分组 /
粒子群优化
{{custom_keyword}} /
Key words
power system /
reactive power optimization /
bionic /
group /
particle sward optimization
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Abdul-Rahman K H,Shahidehpour S M.Reactive power optimization using fuzzy load representation [J].IEEE Transactions on Power Systems,1994,9(2):898-905.
[2] Dai Chaohua,Chen Weirong,Zhu Yunfang,et al.Reactive power dispatch considering voltage stability with seeker optimization algorithm [J]. Electric Power Systems Research,2009,79(10):1426-1471.
[3] 马继山,杨洪耕 (Ma Jishan,Yang Honggeng). 基于内点法和改进粒子群算法的无功优化混合策略 (A hybrid strategy based on IPM and PSO for optimal reactive power flow) [J]. 电工电能新技术 (Advanced Technology of Electrical Engineering and Energy),2010, 29(4):48-51.
[4] 崔挺,孙元章,徐箭, 等 (Cui Ting, Sun Yuanzhang, Xu Jian, et al.). 基于改进小生境遗传算法的电力系统无功优化 (Reactive power optimization of power system based on improved Niche genetic algorithm) [J]. 中国电机工程学报 (Proceedings of the CSEE),2011,31(19):43-50.
[5] 李惠玲,盛万兴,张学仁, 等 (Li Huiling, Sheng Wanxing, Zhang Xueren, et al.). 小生境遗传算法在电力系统无功优化中的应用 (Application of improved Niche genetic algorithm in reactive power optimization) [J]. 电网技术 (Power System Technology),2008,32(17): 29-34.
[6] 曾令全,罗富宝,丁金嫚 (Zeng Lingquan, Luo Fubao, Ding Jinman). 禁忌搜索-粒子群算法在无功优化中的应用(Application of particle swarm optimization algorithm integrated with Tabu search in reactive power optimization) [J]. 电网技术(Power System Technology),2011,35(7):129-133.
[7] 曾学强,刘志刚,符伟杰, 等 (Zeng Xueqiang, Liu Zhigang, Fu Weijie, et al.). 改进差分进化算法在电力系统无功优化中的应用(Application of improved differential evolution algorithm in reactive power optimization) [J]. 电网技术(Power System Technology),2012, 36(2):121-125.
[8] 姜慧兰,陈平,王敬朋, 等 (Jiang Huilan, Chen Ping, Wang Jingpeng, et al.). 改进粒子群算法在电网无功优化中的应用 (Application of improved particle swarm optimization in power system reactive power control) [J]. 中国电力 (Electric Power),2011, 4(12):11-15.
[9] 刘世成,张建华,刘宗岐 (Liu Shicheng, Zhang Jianhua, Liu Zongqi). 并行自适应粒子群算法在电力系统无功优化中的应用 (Application of parallel adaptive particle swarm optimization algorithm in reactive power optimization of power system) [J]. 电网技术 (Power System Technology),2012,36(1):108-112.
[10] 吴方劼,张承学,段志远 (Wu Fangjie,Zhang Chengxue,Duan Zhiyuan). 基于动态多种群粒子群算法的无功优化 (Application of modified particle swarm optimization in reactive power optimization) [J]. 电网技术 (Power System Technology),2007, 31(24):35-39.
[11] 王秀云,宋云峰,贾彦兵, 等 (Wang Xiuyun,Song Yunfeng,Jia Yanbing,et al.). 含维变异的量子粒子群算法在无功优化中的应用(Reactive power optimization based on quantum-behaved particle swarm optimization with dimension mutation operator) [J]. 电工电能新技术 (Advanced Technology of Electrical Engineering and Energy),2010,29(2):38-42.
[12] 刘丽军,蔡金锭 (Liu Lijun,Cai Jinding). 基于自适应强引导粒子群算法的电力系统无功优化 (Reactive power optimization based on adaptive induction-enhanced particle swarm algorithm) [J]. 电工电能新技术 (Advanced Technology of Electrical Engineering and Energy),2012,31(4):24-28.
[13] Kennedy J, Eberharrt R. Particle swarm optimization [A]. Proceedings of IEEE International Conference on Neural Networks [C]. 1995 1942-1948.
[14] 许文超,郭伟 (Xu Wenchao, Guo Wei). 电力系统无功优化的模型及算法综述 (Summarize of reactive power optimization model and algorithm in electric power system) [J]. 电力系统及其自动化学报 (Proceedings of the CSU-EPSA),2003, 15(1):100-104.[1
[5] 李丽,牛奔(Li Li, Niu Ben). 粒子群优化算法 (Particle swarm optimization algorithm) [M]. 北京:冶金工业出版社(Beijing: Metallurgical Industry Press),2009 27-29.[16] Wu Q H,Cao Y J,Wen J Y.Optimal reactive power dispatch using an adaptive genetic algorithm [J]. International Journal of Electrical Power and Energy Systems,1998,20(8):563-569.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}