1. State Key Lab of Power Systems,Dept. of Elec. Eng. ,Tsinghua University,Beijing 100084,China;
2. Power Dispatch and Communication Center,Hainan Electric Power Company,Haikou 570203,China
{{custom_zuoZheDiZhi}}
{{custom_authorNodes}}
{{custom_bio.content}}
{{custom_bio.content}}
{{custom_authorNodes}}
Collapse
文章历史+
收稿日期
出版日期
2010-08-30
2011-07-10
发布日期
2016-08-23
摘要
状态估计是电力系统能量管理系统的重要组成部分。传统加权最小二乘估计不具备抗差性,为此产生了抗差估计理论。本文介绍了抗差估计的定义、目标及基本类型,综述了电力系统抗差状态估计的经典方法和新方法。经典方法主要包括 M 估计、GM 估计、高崩溃污染率估计等; 新方法包括新息图状态估计、最大相关熵估计、最小信息损失状态估计、最多赞成状态估计、最多约束满足状态估计、最大合格率状态估计、最大正常测点率状态估计等。各种新方法通过增加有利于估计的信息提高了估计的抗差性,促进了电力系统状态估计的研究。文中分析比较了各种方法的优缺点,并对今后电力系统抗差状态估计的研究进行了展望。
Abstract
State estimation is an important part of the energy management system of the power system. As the weighted least squares estimation does not have robustness,robust estimation theory was proposed. This paper introduces the definition,goals,and types of the robust estimation and reviews both classical and newly emerging power system robust state estimation methods. The classical methods mainly include M estimation,GM estimation,and high break-down point estimation. The new methods mainly include innovation graph state estimation,maximum correntropy estimation,minimum information loss state estimation,maximum agreement estimation,maximum constraints satisfaction estimation,maximum good measurement rate state estimation,and maximum normal measurement rate state estimation. The new methods improve the robustness of state estimation by adding useful information and thus promote the development of the study on power system state estimation. Various methods are compared and the advantages and disadvantages of these methods are analyzed. At the end of this paper the prospect of this research area is envisioned.
QI Jun-jian,HE Guang-yu,MEI Sheng-wei,GU Zhi-dong.
A review of power system robust state estimation[J]. Advanced Technology of Electrical Engineering and Energy, 2011, 30(3): 59-64
[1]于尔铿 ( Yu Erkeng) . 电力系统状态估计 ( Power system state estimation) [M]. 北京: 水利水电出版社( Beijing: China Water Power Press) ,1985.
[2]P J Huber,E M Ronchetti. Robust statistics[M]. Hoboken: John Wiley & Sons,2009.
[3]P J Huber. Robust estimation of a location parameter [J]. Annals of mathematical statistics,1964,35 ( 1) :73-101.
[4]P J Rousseeuw,A M Leroy. Robust regression and outlier detection [M]. Wiley Series in Probability and Mathematical Statistics,John Wiley & Sons,1987.
[5]C J Stone. Adaptive maximum likelihood estimators of a location parameter [J]. The Annals of Statistics,1975,3( 2) : 267-284.
[6]J Sacks. An asymptotically efficient sequence of estimators of a location parameter [J]. The Annals of Statistics,1975,3( 2) : 285-298.
[7]R Beran. Asymptotically efficient adaptive rank estimates in location models [J]. The Annals of Statistics,1974,2( 1) : 63-74.
[8]周苏荃,柳焯 ( Zhou Suquan,Liu Zhuo) . 新息图法状态估计 ( A power system state estimation method based on innovation graph) [J]. 继电器 ( Relay) ,2000,28( 4) : 1-5.
[9]周苏荃,张艳军 ( Zhou Suquan,Zhang Yanjun) . 新息图状态估计中多相关不良数据辨识 ( Multiple interacting bad data identification for innovation graph technique) [J]. 电力系统及其自动化学报 ( Proc. CSUEPSA) ,2008,20( 4) : 1-6.
[10]张艳军,施 毅 斌,周 苏 荃 ( Zhang Yanjun,Shi Yibin,Zhou Suquan) . 新息图状态估计分块算法 ( Partitioning algorithm for innovation graph state estimation) [J]. 哈尔滨工程大学学报 ( Journal of Harbin Engineering University) ,2008,29( 11) : 1166-1171.
[11]V Miranda,A Santos,J Pereira. State estimation based on correntropy: a proof of concept [J]. IEEE Trans. on Power Systems,2009,24( 4) : 1888-1889.
[12]Andre Santos. Application of entropy concepts to power system state estimation [D]. Porto: University of Porto,2009.
[13]孙宏斌,高峰,张伯明 ( Sun Hongbin,Gao Feng,Zhang Boming) . 电力系统最小信息损失状态估计的信息学原理( Information principle for state estimation in power systems based on minimum information loss) [J]. 中国电机工程学报( Proc. CSEE) ,2005,25( 6) : 11-16.
[14]孙宏斌,高峰,张伯明 ( Sun Hongbin,Gao Feng,Zhang Boming) . 最小信息损失状态估计中潮流和拓扑统一估计的通用理论 ( Minimum information loss based state estimation: general theory for unified estimation of power flow and topology) [J].中国电机工程学报 ( Proc.CSEE) ,2005,25( 17) : 1-4.
[15]孙宏斌,高峰,张伯明 ( Sun Hongbin,Gao Feng,Zhang Boming) . 最小信息损失状态估计在拓扑错误辨识中的应用 ( Application of minimum information loss based state estimation to topology error identification) [J]. 中国电机工程学报 ( Proc. CSEE) ,2005,25( 18) : 1-5.
[16]S Gastoni,G Granelli,M Montagna. Robust state-estimation procedure based on the maximum agreement between measurements [J]. IEEE Trans. on Power Systems,2004,19( 4) : 2038-2043.
[17]A K Al-Othman,M R Irving. Robust state estimator based on maximum constraints satisfaction of uncertain measurement [J]. Measurement,2007,40 ( 3 ) : 347-359.
[18]M R Irving. Robust state estimation using mixed integer programming [J]. IEEE Trans. on Power Systems,2008,23( 3) : 1519-1520.
[19]M R Irving. Robust algorithm for generalized state estimation [J]. IEEE Trans. on Power Systems,2009,24( 4) :1886-1887.
[20]Shufeng Dong,Guangyu He,Zuyi Li. A new state estimation method with bad data rejection properties [A].SUPERGEN’'09 International Conference on Sustainable Power Generation and Supply [C]. 2009. 1-5.
[21]董树锋,何光宇,孙英云等 ( Dong Shufeng,He Guangyu,Sun Yingyun,et al. ) . 以合格率最大为目标的电力系统状态估计新方法 ( A novel method for power system state estimation with maximum good measurement rate) [J]. 电力系统自动化 ( Automation of Electric Power Systems) ,2009,33( 16) : 40-43.
[22]何光宇,董树锋 ( He Guangyu,Dong Shufeng) . 基于测量不确定度的电力系统状态估计 ( 1) : 结果评价( Power system static-state estimation based on uncertainty of measurement Part one result evaluation) [J]. 电力系统自动化 ( Automation of Elec. Power Systems) ,2009,33( 19) : 21-24.
[23]何光宇,董树锋 ( He Guangyu,Dong Shufeng) . 基于测量不确定度电力系统状态估计( 2) : 方法研究 ( Power system static-state estimation based on uncertainty of measurement Part two a new method) [J]. 电力系统自动化 ( Automation of Elec. Power Systems) ,2009,33( 20) : 32-36.
[24]何光宇,董树锋 ( He Guangyu,Dong Shufeng) . 基于测量不确定度电力系统状态估计( 3) : 算法比较 ( Power system static-state estimation based on uncertainty of measurement Part three algorithms compared) [J]. 电力系统自动化 ( Automation of Elec. Power Systems) ,2009,33( 21) : 28-31.
[25]H M Merrill,F C Schweppe. Bad data suppression in power system state estimation [J]. IEEE Trans. on PAS,1971,90( 6) : 2718-2725.
[26]L Mili,V Phaniraj,P J Rousseeuw. Least median of squares estimation in power systems [J]. IEEE Trans. on Power Systems,1991,6( 2) : 511-523.
[27]M R Irving,R C Owen,M J H Sterling. Power system state estimation using linear programming [J]. IEE Proceedings,1978,125( 9) : 879-885.
[28]W W Kotiuga,M Vidyasagar. Bad data rejection properties of weighted least absolute value techniques applied to static state estimation [J]. IEEE Trans. on PAS,1982,101( 4) : 844-853.
[29]A Abur. A bad data identification method for linear programming state estimation [J]. IEEE Trans. on Power Systems,1990,5( 3) : 894-901.
[30]R A Jabr,B C Pal. Iteratively reweighted least-squares implementation of the WLAV state estimation method [J]. IEE Proceedings,2004,151( 1) : 103-108.
[31]李碧君,薛禹胜,顾锦汶 ( Li Bijun,Xue Yusheng,Gu Jinwen) . 基于权函数的电力系统状态估计算法( Weight function based power system state estimation al [J]. 电力系统自动化 ( Automation of Elec.Power Systems) ,1999,23( 8) : 32-34.
[32]M K Celik,A Abur. A robust WLAV state estimator using transformations [J]. IEEE Trans. on Power Systems,1992,7( 1) : 106-113.
[33]R Baldick,K A Clements,Z Pinjo-Dzigal. Implementing non-quadratic objective functions for state estimation and bad data rejection [J]. IEEE Trans. on Power Systems,1997,12( 1) : 376-382.
[34]郭伟,单渊达 ( Guo Wei,Shan Yuanda) . M 估计方法及其在电力系统状态估计中的应用 ( M estimation and its application in power system state estimation) [J]. 中国电机工程学报 ( Proc. CSEE) ,2000,20( 9) : 26-31.
[35]F R Hampel,E M Ronchetti,P J Rousseeuw. Robust statistics: the approach based on influence functions [M].Wiley Series in Probability and Mathematical Statistics,John Wiley & Sons,1986.
[36]E Handschin,F C Schweppe,J Kohlas. Bad data analysis for power system state estimation [J]. IEEE Trans. on Power Apparatus and Systems,1975,94( 2) : 329-337.
[37]L Mili,M G Cheniae,N S Vichare. Robust state estimation based on projection Statistics [J]. IEEE Trans. on Power Systems,1996,11( 2) : 1118-1127.
[38]P J Rousseeuw,V Yohai. Robust regression by means of S-estimators. Robust and nonlinear time series analysis [M]. Springer-Verlag,Berlin/New York,1984.
[39]V J Yohai,R H Zamar. High breakdown-point estimates of regression by means of the minimization of an efficient scale [J]. Journal of the American Statistical Association,1988,83( 402) . 406-413.
[40]L A Stefanski. A note on high-breakdown estimator [J].Statistics & Probability Letters,1991,11( 4) : 353-358.
[41]L Mili,V Phaniraj,P J Rousseeuw. High breakdown point estimation in electric systems [A]. Proc. IEEE Circuits and Systems [C]. 1990. 1843-1846.
[42]L Mili,M G Cheniae,P J Rousseeuw. Robust state estimation of electric power systems [J]. IEEE Trans. on Circuits and Systems I: Fundamental Theory and Applications,1994,41( 5) : 349-358.
[43]M G Cheniae,L Mili,P J Rousseeuw. Identification of multiple interacting bad data via system decomposition [J]. IEEE Trans. on Power Systems,1996,11 ( 3) :1555-1563.
[44]W Liu,P P Pokharel,J C Principe. Correntropy: Properties and applications in non-Gaussian signal processing [J]. IEEE Trans. on Signal Processing,2007,55( 11) :5286-5298.
[45]A Monticelli. State estimation in electric power systems-a generalized approach [M ]. Norwell, MA: Kluwer,1999.
[46]BIPM,IEC,IFCC,et al. Guide to the expression of uncertainty in measurement [Z]. Geneva,Switzerland: International Organization for Standardization,1993.