BESS configuration and control design for ADN based on probabilistic load flow

XIAO Yuan-yuan, YANG Yi-yun, GAO Li-ke, et al.

Advanced Technology of Electrical Engineering and Energy ›› 2016, Vol. 35 ›› Issue (6) : 74-80.

PDF(8041 KB)
PDF(8041 KB)
Advanced Technology of Electrical Engineering and Energy ›› 2016, Vol. 35 ›› Issue (6) : 74-80.
New Technology Application

BESS configuration and control design for ADN based on probabilistic load flow

  • XIAO Yuan-yuan, YANG Yi-yun, GAO Li-ke, et al.
Author information +
History +

Abstract

 With the high-penetration of the intermittent distributed generation (DG), the grid will endure great power fluctuation. However, high efficiency of DGs and active load can be achieved by the active distribution network (ADN). The configuration and operation schedule of the battery energy storage system (BESS) will help the ADN staying in a relatively steady state. Probabilistic power flow, comparing with the deterministic power flow, can provide more information about the possible future conditions of the power system. The characters of the key point nodes are analyzed, and the possible ranges are identified. After the optimal configuration of BESS based on the Monte Carlo probabilistic load flow, a control schedule with multi-modes is designed by the characters of the system. The model is simulated in PowerFactory and proved to be a good solution to help restraining reverse power flow, improving voltage quality and decreasing network loss, also with load shifting ability.

Key words

probabilistic load flow / active distribution network / battery energy storage system / capacity configuration / operational control schedule

Cite this article

Download Citations
XIAO Yuan-yuan, YANG Yi-yun, GAO Li-ke, et al.. BESS configuration and control design for ADN based on probabilistic load flow[J]. Advanced Technology of Electrical Engineering and Energy, 2016, 35(6): 74-80

References

[1] 范明天, 张祖平, 苏傲雪, 等 (Fan Mingtian, Zhang Zuping, Su Aoxue, et al.). 主动配电系统可行技术的研究 (Enabling technologies for active distribution systems) [J]. 中国电机工程学报 (Proceedings of the CSEE), 2013,33 (22): 12-18, 5.
[2] 余昆, 曹一家, 陈星莺, 等 (Yu Kun, Cao Yijia, Chen Xingying, et al.). 含分布式电源的地区电网动态概率潮流计算 (Dynamic probability power flow of district grid containing distributed generation) [J]. 中国电机工程学报 (Proceedings of the CSEE), 2011, 31(1): 20-25.
[3] 刘东, 陈云辉, 黄玉辉, 等 (Liu Dong, Chen Yunhui, Huang Yuhui, et al.). 主动配电网的分层能量管理与协调控制(Hierarchical energy management and coordination control of active distribution network) [J]. 中国电机工程学报(Proceedings of the CSEE), 2014, 34(31): 5500-5506.
[4] 王成山, 于波, 肖峻, 等 (Wang Chengshan, Yu Bo, Xiao Jun, et al.). 平滑微电网联络线功率波动的储能系统容量优化方法 (An energy storage system capacity optimization method for micro grid tie-line power flow stabilization) [J]. 电力系统自动化 (Automation of Electric Power Systems), 2013, 37(3):12-17.
[5] 尤毅, 刘东, 钟清, 等 (You Yi, Liu Dong, Zhong Qing, et al.).主动配电网储能系统的多目标优化配置(Multi-objective optimal placement of energy storage systems in an active distribution network) [J]. 电力系统自动化(Automation of Electric Power Systems), 2014, 38(18): 46-52.
[6] 丁明, 徐宁舟, 毕锐 (Ding Ming, Xu Ningzhou, Bi Rui). 负荷侧新型电池储能电站动态功能的研究(Dynamic model of new-type battery energy storage system at demand side) [J]. 电力自动化设备 (Electrical Power Automation Equipment), 2011, 31(5): 1-7.
[7] 刘琳,陶顺,肖湘宁,等(Liu Lin,Tao Shun,Xiao Xiangning,et al.). 分布式发电及其对配电网网损的影响分析 (Distributed generation and its impact on network loss of power system) [J]. 电工电能新技术 (Advanced Technology of Electrical Engineering and Energy), 2012, 31(3): 16-19.
[8] Atwa Y M, El-Saadany E F. Optimal allocation of ESS in distribution systems with a high penetration of wind energy [J]. IEEE Transactions on Power Systems, 2010, 25(4): 1815-1822.
[9] 董博, 李永东, 郑治雪 (Dong Bo, Li Yongdong, Zheng Zhixue). 分布式新能源发电中储能系统能量管理(Application of expert system and visualization in grid maintenance scheduling) [J].电工电能新技术 (Advanced Technology of Electrical Engineering and Energy), 2012, 31(1): 22-25, 96.
[10] 李振文, 颜伟, 刘伟良, 等 (Li Zhenwen, Yan Wei, Liu Weiliang, et al.). 变电站扩容和电池储能系统容量配置的协调规划方法 (Coordinated planning of substation expansion and BESS sizing) [J]. 电力系统保护与控制(Power System Protection and Control), 2013, 41(15): 89-96.
[11] Hans B, José D. A probabilistic method for energy storage sizing based on wind power forecast uncertainty [J]. IEEE Transactions on Power Systems, 2011, 26(3):1651-1658.
[12] P Pinson, G Papaefthymiou, B Klockl, et al. Dynamic sizing of energy storage for hedging wind power forecast uncertainty [A]. IEEE Power & Energy Society General Meeting [C]. 2009. 1-8.
[13] 鲍冠南, 陆超, 袁志昌, 等 (Bao Guannan, Lu Chao, Yuan Zhichang, et al.). 基于动态规划的电池储能系统削峰填谷实时优化 (Load shift real-time optimization strategy of battery energy storage system based on dynamic programming) [J].电力系统自动化(Automation of Electric Power Systems), 2012, 36(12): 11-16.
[14] Karaki S H, Chedid R B. Probabilistic performance assessment of autonomous solar-wind energy conversion systems [J]. IEEE Transactions on Energy Conversion, 1999, 14(3): 766-772.
[15] Kadurek P, Kling W L, Ribeiro P F, et al. Electricity demand characterization for analyzing residential LV distribution networks [A]. 2013 IEEE Grenoble PowerTech[C]. 2013. 1-5.
[16] 丁明, 张颖媛, 茆美琴, 等 (Ding Ming, Zhang Yingyuan, Mao Meiqin, et al.). 包含钠硫电池储能的微网系统经济运行优化 (Economic operation optimization for microgrids including Na/S battery storage) [J]. 中国电机工程学报 (Proceedings of the CSEE), 2011, 31(4): 7-14.
[17] 钟宇峰 (Zhong Yufeng). 微电网中电池储能系统的动态优化调度及可靠性建模问题研究 (Research on operation optimization and reliability modeling of battery energy storage system in micro grid) [D]. 杭州: 浙江大学 (Hangzhou: Zhejiang University), 2014.
[18] Nikolaos P. Voltage control in MV distribution networks with a large share of distributed renewable generation [D]. Delft: Delft University of Technology, 2013.
PDF(8041 KB)

327

Accesses

0

Citation

Detail

Sections
Recommended

/